Lec 1 - 1/16	•
MATH 141 Differential Topology	•
Instructor Boriz Madenov mladenov@berkeley.edu	
Office Hours: 11-12/12:30, 1073 Evens	
Grading: weekly homenerk, Tues, due next Tues before lecture. Submissions on gradescope	٠
Homework: 30%. Milliam 20%. Final 50%.	•
Book: Differential Topology by Guillemin & Polluck	
Also - Smooth Manifolds by Lee	٠
- Topology from the differential viewpoint by Milnor	٠
- Differential Topology by Hirsch	
Backyround : - General Topology - Multivariable Analysis - Linear / Multi-lineas Algebra - Abstract Algebra	
Smooth Manifolds, smooth maps	•
R^n \odot $7^2 \simeq S' \times S'$ GL_n - invertible $n \times n$ matrices	
05' 05' genus 3 purface · Finite set of points in R"	•
Det A topological space X is locally Euclidean .s	
$\forall x \in X, \exists an open neighborhood x \in U and a homeomorphism$	•
$\varphi: \mathcal{U} \rightarrow \mathcal{V} \subseteq \mathbb{R}^n$, where \mathcal{V} is open	•
Def A topological manifold is a second countable, Hausdorff, locally Euclidean topological space.	•
	-

Def (smooth function)
Let $X \subseteq \mathbb{R}^n$ and consider a (cb) map $f: X \rightarrow \mathbb{R}^n$
We say that f is smooth at $x \in X$ if $\exists an open x \in U \in \mathbb{R}^n$ and
an extension f (fluex = fluex) which is smooth, i.e. it has partial derivatives of all orders.
t is small on X if it is smulth at every x & X.
$\frac{\text{Det}}{\text{diffcomorphism}} \land M \underset{\text{IR}}{\text{map}} f : X \to Y \text{ is a diffcomorphism} \text{if} :$
1) f is a bijection 2) f is smooth 3) f is smooth
If there is a diffeomorphism between X and Y, we say they are diffeomorphic and write $X \cong Y$
• $\beta \cong \Re \cong \mathscr{F} \not\cong \mathscr{F}$ issue, tangent space \mathbb{R}^{2}
$\cdot - \tilde{=} \sum_{i=1}^{\infty} \tilde{\neq} Y$
Difference between something admits a smooth structure and if its realization in R" is smooth.
Def (Smooth (sub) manifold, 1st altempt)
A subset $X \in \mathbb{R}^n$ is a smooth (sub) manifold (of \mathbb{R}^n) of dimension k if
$\forall x \in X, \exists an open x \in \widetilde{\mathcal{U}} \subseteq \mathbb{R}^{n}$ and a diffeomorphism $\varphi: \widetilde{\mathcal{U}} \cap X \xrightarrow{\cong} V \subseteq \mathbb{R}^{k}$.
The pair $(\tilde{\mathcal{U}}, \varphi)$ is called a smooth chart around $x \in X$.
Examples R" trivially a smooth manifold Simple smooth chart that covers R" (R", id)
$S^{2} = \{x^{2} + y^{2} = 1\} \subseteq \mathbb{R}^{2}$
$\mathcal{U}_{x < 0} = \{x > 0\} \cap S'$ $\mathcal{U}_{x < 0} = \{y > 0\} \cap S'$ $\mathcal{U}_{x < 0} = \{y > 0\} \cap S'$
$\begin{array}{ccc} \varphi_{x > o} & \mathcal{U}_{x > o} & \longrightarrow (+, +) \in \mathbb{R} \\ & (x, y) & \longmapsto & y \\ \varphi_{x > o}^{-1} & \vdots & (-1, +) & \longrightarrow & \mathcal{U}_{x > o} \\ & y & \longmapsto & (\sqrt{1 - y^{*}}, y) \end{array}$

Lec 2 - 1/18 Smooth Manifolds and tangent spaces
Examples
1) $GL(n) \leq \mathbb{R}^{n^2}$ of invertible n×n matrixes is a smooth manifold.
$GL(n) = det'(\mathbb{R}^{n^2} \{ s \}),$ where $det : Mat(n) = \mathbb{R}^{n^2} \to \mathbb{R}$ is the determinant.
2) O(n) & GL(n) - the space of orthogonal matrices, i.e., A & O(n) = AA = I
Let $so(n)$ be the space of $n \times n$ shew-symmetric matrices, i.e. $A \in so(n)$ iff $A = -A^T$
$SO(n)$ is diffeomorphic to $\mathbb{R}^{\binom{n}{2}}$
Then the exponential eags: 50(n) -> O(n) is a local diffeomorphism by the inverse function theorem
A to e nonzero - loully invertible
This gives a chart around $I \in O(n)$, $e^{\circ} = I$.
Then for any other A = O(11), we can just translate using rateir multiplication
A second def of smooth manifolds
Det Let X be a topological manifold and let $(\mathcal{U}_1, \varphi_1)$ and $(\mathcal{U}_2, \varphi_2)$ be two charts by have to be
The transition function from (U_2, φ_1) to (U_2, φ_2) is given by homeomorphisms
$\varphi_{2i} = \varphi_2 \circ \varphi_i^{\dagger} \varphi_i(u_i \cap u_2) : \varphi_i(u_i \cap u_1) \rightarrow \varphi_2(u_i \cap u_2) \qquad \qquad$
$\begin{aligned} \varphi_{2i} &= \varphi_{2} \circ \varphi_{i}^{-1} _{\varphi_{i}(\mathcal{U}_{i} \cap \mathcal{U}_{2})} : \varphi_{i}(\mathcal{U}_{i} \cap \mathcal{U}_{2}) \longrightarrow \varphi_{2}(\mathcal{U}_{i} \cap \mathcal{U}_{2}) \\ \underbrace{\mathcal{D}_{ef}}_{P_{i}} (\mathcal{D}_{i} \cap \mathcal{U}_{2}) \xrightarrow{\mathcal{V}_{2}} \left(\begin{array}{c} \mathcal{D}_{i} \\ $
Let X be a top manifold.
Suppose $(U_{\alpha}, \varphi_{\alpha})$, $\alpha \in I$ is an open cover of charts for X.
We say that collection $\{(\mathcal{U}_{a}, \mathcal{P}_{a})\}_{a \in I}$ is a smooth atlas
if the transition functions between any two charts are smooth.
Def Two (smooth) atlases {(U, P)} and {(V, Y)} are quivelent
if their runion is a (smooth) atlas.
Exercise Show the above relation between smooth atlases is an equivalence relation.

Def: A smooth manifold is a topological manifold together with an	
equivalence class of smooth atlases.	
<u>Example</u> : Projective Space	
RP"= set of lines in R" through the origin. representative of line	
A point in RP" can be represented by $[x_0,, x_n]$, where at least one $x_i \neq 0$.	
For any $\lambda \in \mathbb{R} \setminus \{0\} : [x_0,, x_n] = [\lambda x_0,, \lambda x_n]$	
RP" = R" 1503/12" - This is given the quotient topology via the projection T: R" 103	$\rightarrow \mathbb{RP}^{n}$
It we restrict to the sphere: I the smooth structure is easy, We do it	by defen,
Let $\mathcal{U}_i = \{x_i \neq 0\} \cap \mathbb{RP}^n = \{[x_0,, x_n] \in \mathbb{RP}^n : x_i \neq 0\}$ spen $\mathbb{R}^{n} \setminus \{x_0\}$	however.
$\varphi_{i}:\mathcal{U}_{i} \rightarrow \mathbb{R}^{n}, [\varkappa_{o_{j}\cdots,}\varkappa_{n}] \longmapsto \left(\frac{\varkappa_{o}}{\varkappa_{i}}, \cdots, \frac{\varkappa_{i}}{\varkappa_{i}}, \cdots, \frac{\varkappa_{n}}{\varkappa_{i}}\right)$	· · · ·
The inverse $(y_0,, y_{n-1}) \mapsto [y_0,, 1,, y_{n-1}]$	
The inverse $(y_0,, y_{n-1}) \mapsto [y_0,, 1,, y_{n-1}]$ Let's do $n = 1$: (u_0, y_0) , (U_1, y_1)	
Then the transition functions is IR/803 - IR/803	
In general, fix is say is what does q, lack like? monithed	
$(y_{0}, \dots, y_{n-1}) \xrightarrow{P_{j}} [y_{0}, \dots, \frac{1}{j}, \dots, y_{n-1}] \xrightarrow{Y_{j}} \left(\frac{y_{0}}{y_{j}}, \dots, \frac{y_{1}}{y_{j}}, \dots, \frac{y_{n-1}}{y_{j}} \right)$	
This is smooth!	
Det: Let X, Y be smooth men folds and $F: X \rightarrow Y a$ its map.	· · · · ·
We say F is smooth at $x \in X$ if $X \in F$, , , , , , , , , , , , , , , , , , , ,
there are charts (U, φ) around x and (V, γ) around $F(x)$ such that	
	Rm 4
$\psi \circ F \circ \psi^{\dagger}$	IR ⁱⁿ Y

Let 3-1123. Tanged Spaces and Derivatives
Rectil if U, VS R², the for a prop
$$\varphi : U \rightarrow V$$
, the derivative of φ of $x \in U$
is the linear prop st $\varphi(y) = \varphi(x) \cdot d_R(y) \cdot d_{R^2}$.
In porticilar, if γ is linear, the dg = γ .
Let $X \in \mathbb{R}^n$ be a small manifold, and let (U, γ) be a clast around $x \in X$; (assume $\varphi(r) = 0 - \mathbb{R}^n$.)
Then, $d : V = \varphi(u)$, we get a prop $V \rightarrow \mathbb{R}^n$. This its linear appearingtion of φ .
Then, $d : V = \varphi(u)$, we get a prop $V \rightarrow \mathbb{R}^n$. This its linear appearingtion of φ .
Then, $v = define:$
 $\varphi(v) = \psi(v)$, we get a prop $V \rightarrow \mathbb{R}^n$. This is linear appearing $\psi(r) = 0 - \mathbb{R}^n$.
The found space is An $x \in X$ as the imperial $d_R^{-1}, V \rightarrow \mathbb{R}^n$.
The found space is child by T_{-X} .
 $\varphi(v) = V = \mathbb{R}^n$.
Let $(U, \varphi) = d(U, \psi)$ be two closes colored around $x = X$.
 $(reginet h around $v = X = (reginet h around $v = X$.
 $(reginet h around $v = X$.
 $Then the branchine to $Y = Y$ and we have:
 $r^n = \overline{Y} \cdot (Y - Y)$. Taking closentiers, we get $d(\overline{Y}^n = d(\overline{Y} \cdot (\overline{Y} - \overline{Y}))) = \frac{d(\overline{Y}^n - \overline{Y})}{W^n U} = \frac{d(\overline{Y}^n$$$$$

$Example : S^1 \in \mathbb{R}^2$
$\mathcal{U} = S^{2} \cap \{x > 0\} \text{What is } \overline{T}_{(x,y,)} S^{2}?$ $(x_{0},y_{0}) \varphi : \mathcal{U} \rightarrow (-1,1) \Omega $ $(x,y) \mapsto Y R^{2}$
$\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
Then $dy_{y}^{-1} = \begin{pmatrix} \frac{y}{1-y^{*}} \\ 1 \end{pmatrix} \Rightarrow$ the image is the corresponding tangent space $T_{(x,y)} S^{2}$. In particular for $(x_{0}, y_{0}) : Im \begin{pmatrix} -\frac{y_{0}}{x_{0}} \\ 2 \end{pmatrix} = Im \begin{pmatrix} -y_{0} \\ x_{0} \end{pmatrix}$ the orthogonal to (x_{0}, y_{0})
$F_{n}: S^{1} \rightarrow S^{2} \qquad S' \xrightarrow{F_{n}} S' \qquad TS' \xrightarrow{dF} TS' \xrightarrow{(-sint)} \xrightarrow{nF_{n}} (-sint) \xrightarrow{nF_{n}} (-sint) \xrightarrow{nF_{n}} (-sint) \xrightarrow{nF_{n}} (-sint) \xrightarrow{nF_{n}} (-sint) \xrightarrow{(-sint)} \xrightarrow{nF_{n}} (-sint) \xrightarrow{(-sint)} \xrightarrow$
$exp: R \rightarrow S^{2}$ $t \mapsto (cus(t), sin(t)) \qquad R \rightarrow R \qquad R \rightarrow nt$ $dexp = \begin{pmatrix} -sint \\ cost \end{pmatrix}$ $Sture cound circle$
Det: A curve in X through $x \in X$ is a smooth map $\sigma: (-\xi, \xi) \to X$ $\sigma(\circ) = x$
$X \subseteq \mathbb{R}^{n} \text{ For a chost } (\mathcal{U}, \varphi) :$ $T_{x} \times \mathcal{V} \text{ Fix a choice for } \mathcal{V} \in T_{x} \times $ $dy_{x} \left[\chi \right] \qquad $
We have a line in \mathbb{R}^n through 0 and v, then the pull-back under φ gives a
curve in X with the required properties.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Lec 4-1/25
Last time
$X \subseteq \mathbb{R}^{n} \longrightarrow T_{x} X$, $\forall x \in X$ For a chart (U, φ) , the image of U under φ is \widetilde{U} .
$\begin{array}{llllllllllllllllllllllllllllllllllll$
(\mathcal{U}, φ) chost around x , then $T_x X = Im d(\varphi)_0, \varphi: \mathcal{U} \to \widehat{\mathcal{U}} = \mathbb{R}^n$
$T_x \times \mathfrak{r}$ Let \mathcal{L} be the line $t \longrightarrow t d\varphi_x(\mathfrak{r})$. This is a line in \mathbb{R}^n .
SII] R ^m dp _n (v) R ^m dp _n (v) then we get a curve $\sigma = \varphi \circ L : (-\varepsilon, \varepsilon) \to \mathcal{U}$ which satisfies 2 conditions:
In $d\phi_{\infty}(v)$ then we get a curve $\sigma = \phi \circ L : (-\varepsilon, \varepsilon) \to U$ which satisfies 2 conditions:
O(0) = X - our closice of point
do (2) = v - our choice of tangent vector
Det Let 5, 52 be two comes in X. We say they are equivalent of
$\sigma_1(o) = \sigma_2(o) = x \text{and} d(\sigma_1)(1) = d(\sigma_2)(1),$
The equivalence class is denoted [c]
Det Let X be a smooth manifold. Then the tangent space at x e X is
the space of equivalence classes of curres in X such that $\sigma(o) = x$.
Lemma The tangent space is a vector space of dimension dim X = N
PF Let (U, q) be a chock around x = X. Then we define
$\mathcal{T}_{\mathbf{x}} \times \to \mathcal{R}^{\mathbf{n}}$
[] -> d(qoo) (1) This is a bijection by definition (of [])
This vector space structure is independent of (11, 4):
$\dot{}$
$\mathbb{R}^{r} \xrightarrow{\cong} \mathbb{R}^{r}$

$$\begin{split} X & \in \mathbb{R}^{N} \qquad \forall \quad \overline{1_{X}} \times \stackrel{de}{\longrightarrow} \quad \overline{1_{rev}} Y \\ F & X \to Y \qquad \int d_{Y_{n}} \left[d_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ d_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ d_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ d_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ d_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \left[f_{Y_{n}} \right] \right] \\ f_{Y_{n}} & f$$

Lec 5-1/30 immensions, submersions, embeddings Inverse Function Thm (Calculus) Lat F U -> V be a smooth map U, V apon. Assume that $dF: \mathbb{R}^n \xrightarrow{\cong} \mathbb{R}^n$ is an isomorphism, where $x \in \mathcal{U}$. Then F is a local diffeomorphism around x, i.e. there is an open x ∈ Us ⊆ U such that $F|_{\mathcal{U}_{*}}: \mathcal{U}_{*} \to F(\mathcal{U}_{*}) = \mathcal{V}_{*} \subseteq \mathcal{V}$ is a diffeomorphism. U. Flue, V. idui (Flui) Inverse Function Thm (Manifolds) $\mathcal{U}_{o} \xrightarrow{d_{\mathcal{U}_{o}}} \mathcal{U}_{o}$ Lel F: X -> Y be a smooth may between smooth manifolds X and Y. Assume that dFx: Tx X -> TF(x) Y is an isomorphism. Then F is a local diffeomorphism around x. $\begin{array}{c} Pf: Lef (U, \varphi) & be a chest around x \\ (V, \gamma) & \longrightarrow & F(x). \end{array}$ Then we have $\mathcal{U} \xrightarrow{F} \mathcal{V}$ $\mathcal{U} \xrightarrow{F} \tilde{\mathcal{V}}$ So dFx is an isomorphism d Fo is an isomorphism $\begin{array}{cccc} U_{0} & \overbrace{F} | u_{-} & \overbrace{V}_{0} & Then & F| & \text{ is a diffeomorphism} \\ & U_{0} & \overbrace{diffeomorphism} & F|_{\varphi'(\widehat{U}_{0})} & \varphi''(\widetilde{U}_{0}) \rightarrow \varphi'(\widetilde{V}_{0}) & \Box \end{array}$ This (Structure this for impersione) Let F X - Y be a smooth may between manifalches X and Y and assume that F is an immersion at $x \in X$. (i.e. dF_{x} is injective) Then there are charts (14, 4) and (V, 4) around x and F(x) respectively, $u \xrightarrow{F} v$ $\begin{array}{c} \mathsf{f} \\ \mathsf{\tilde{u}} \xrightarrow{\mathsf{F}} \\ \mathsf{\tilde{v}} \end{array}$ such that $\widetilde{F}: \widetilde{\mathcal{U}} \to \widetilde{\mathcal{V}}$ is the map $(x_1, \dots, x_n) \longmapsto (x_1, \dots, x_n, o, \dots, o).$

Pf Since dFx is injective, dFo is injective. So we can assume dF: $\mathbb{R}^n \to \mathbb{R}^m$ is of the form $\begin{pmatrix} Id_n \\ 0 \end{pmatrix}$. (by changing basis)
Let $\overline{\Psi}: \widetilde{\mathcal{U}} \times \mathbb{R} \longrightarrow \widetilde{\mathcal{V}}$ $(*, 2) \longmapsto \widetilde{F}(x) + (0, 2)$ (by changing basis)
Then do is given by (idn o), so I is a diffeomorphism around 0 by the inverse function theorem.
There are $\widetilde{\mathcal{U}} \subseteq \widetilde{\mathcal{U}} \times \mathbb{R}^{n-n}$ and $\widetilde{\mathcal{V}} \subseteq \widetilde{\mathcal{V}}$ such that $\overline{\Phi} : \widetilde{\mathcal{U}} \to \widetilde{\mathcal{V}}$ is a slift of
Then we have a diagram $\widetilde{\mathcal{U}}, \stackrel{\widetilde{F}}{\longrightarrow} \widetilde{\mathcal{V}}_{s}$, where $\mathcal{O} \in \widetilde{\mathcal{U}}, \subseteq \widetilde{\mathcal{U}}, \stackrel{\widetilde{\mathcal{U}}}{\longrightarrow} \widetilde{\mathcal{U$
Embedding = Immersion + homes onto its image Def A top space is Locally compact
Del A mays is propez if the preimage of a compact set is compact. Then: A proper injective immersion is an embedding. $I \times \mathcal{E} \times, \forall open U \Rightarrow \times, \exists open V \Rightarrow \times$ $I = U$ and \overline{V} is compact.
Pf We have a lemma.
Lemma: Let X, Y be Haussdorf topological spaces, Y is locally compact and
suppose $f: X \to Y$ is proper. Then f is closed. (maps closed to closed)
Assuming the lemma, since any manifold is locally compact, an injective proper innersion
is a homeomorphism onto its image. D
Pt of lemma: Let A = X be closed. WTS f(A) is closed, i.e. Y\F(A) is open, i.e. for any
y = Y \ f (A) there is an open U & y such that U ^ f(A) = \$,
Let V be an open nord such that \overline{V} is compact. Since F is proper, $f(\overline{v})$ is compact in X,
so the same goes for $C = f'(V) \land A$. Then $f(C)$ is compact, hence closed in Y.
Hence $\mathcal{U} = \mathcal{V}(f(c))$ is open in $Y, y \in \mathcal{U}$ and $\mathcal{U} \cap f(A) = \emptyset$. \Box
Cor Any injective immersion between compart manifolds is an embedding.
· · · · · · · · · · · · · · · · · · ·

The	<u>m</u> (she	tr	۱	Hu	ŗ	fo	r	80	bm	ers	ion.	s)	•	•	•	•	•	•	•	•	•	•				• •		<i>t.</i>			1.,		• •	
•	Ŀ	t i	F:	\times		Ϋ́	be	- 0	- , s	mor	th	may	r P	sid	! ti	hat	d	Fac il	?. Se	Geo	h ve	at	- ×	: E	Χ.		pen th	is i	is t	n to	în	við plie	ean	spe hune	aces, tion m)
•		Th																		hal	L		51	' `~v	•	•	• •			•	•	•	the	our	n)
•	•	In	the	di	ag 7	am	Ê	U. 	π	ũ	uh	ere	π	R	ю. 	R	n	•	•	•	9] ũ	Ê		["]		•				•	•	•	•	• •	
	•																				×.)		•	<u>ł</u>	ዥ:	Nex	<i>t</i> 1	time	e	•	•			
D	ef:	L	et	X	be	- G	- 8	mər	oth	m	ani	fold	ľ,	2	a .	sub	zpa.	a o	ł	X.	a		*			•	• •	•			•			• •	
•	T	l ren	be	- 8	7	ťh	eit	Z	2 i	s 0	. <u>1</u>	mb	ma	nife	,ll	of	X	้เป	ł	1 2	e 2	2	the	ire		a	cha	rt.	(1	Å, q	Ĵ	•	•	• •	
•	Şı	ch	Eh	at	9	ίu		2)	= 1	ũ	n lí	ໂ	⋸∥	R",	w	ere	, r	n er	n _, a	md	n	is t	the	din	. X		• •	•		•	•	•	•	• •	
	•	•	•	• •		•	•	*	•	•	•	•	*	•	•	•	*	•			•		•	•		•		•		•	•	•	•		
•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	• •	•		•	•	•	•	• •	
	•		•	• •		•	•				•	٠					•				•		•		•		• •			•	•	•			
	•	•	•	• •	2	•	•	•	•	•	•	÷	•	•	•	•	•	•		•	•	•	•	•	•	•	• •			•	•	•	•		
•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •			•	•	•	•	••••	
•	•	0	•	• •	,	•	•	•		0	•	•	•	•	•	•	•	0	•	•	•		•	•	•		• •			•	•	•		• •	
•	•	0	•	• •		•	•	•	•	0	•	•	•	•	•	•	*	•	•	•	•		•	•		•				•	*	•	•		
																											• •								
																											• •								
																																			•
																											• •								
																											••••								
	•	•	•	• •		•	•	•		•	•	•	•		•	•	•		•	•	•	•	•	•	• •	•	• •	•		•	•	•			

Lee 6 - 211 Implied function them, level sets and submanifolds
$\frac{Thm}{R^{n}} \begin{array}{c} Lc F : \mathcal{U} \longrightarrow \mathcal{V} \end{array} \begin{array}{c} be a smooth map such that \\ R^{n} & R^{n} \end{array}$
for some $x \in U$, $dF_x : \mathbb{R}^n \to \mathbb{R}^m$ is surjective. Then, there is an open $x \in U_s \subseteq U$
and a diffeomorphism of U of (U.) such that we have
$\varphi(u_{o}) \xrightarrow{\varphi'} \mathcal{U}_{o}$
Proof: By assumption $dF_{x} = \left(\frac{2F}{2x_i}\Big _{x_i}\right)^{T}$ is is rank $m \Rightarrow$ after possibly reshuffling the x_i 's,
Proof By assumption $dF_{x} = \left(\frac{\partial F}{\partial x}\right)^{x}$ is of rank $m \Rightarrow$ after possibly reshuffling the x's,
we may assume the last m-columns span R. Denote this mxm matrix by M= (Jx)x.
Then we can define $G: \mathcal{U} \to \mathbb{R}^n$
$\mathbf{x} = (\mathbf{x}_{i_1, \dots, i_m}, \mathbf{x}_{i_1, \dots, i_m}, \mathbf{x}_{i_1, \dots, i_m}, F(\mathbf{x}_{i_1}))$
By def, $d_{\sigma_{\alpha}} = \begin{pmatrix} T & 0 \\ * & M \end{pmatrix} \Rightarrow det (d_{\sigma_{\alpha}}) = det M \neq 0 \Rightarrow d_{\sigma_{\alpha}}$ is an isomorphism,
hence by the inverse function theorem, G is a local diffeomorphism.
⇒ I Uo ≤ U such that G uo Uo → G (Uo) is a diffeoringhism
Moreover, $\mathcal{U}_{o} \xrightarrow{G _{u_{o}}} G _{u_{o}}(\mathcal{U}_{o})$ \downarrow_{T} We are done by setting $\varphi = G _{u_{o}}$. \Box $F _{v} R^{m}$
Det Let F: X > Y be a smooth map.
· We say that $x \in X$ is a regular point for F if dF_x is surjective $T_x X \to T_{F(x)} Y$
· We say that y & Y is a regular value for F if all points in F(y) are regular.
Then Let $F: X \to Y$ be a smooth map between manifolds. Assume $x_0 \in X$ is a regular point.
Then there are charts around x and y = F(x): (U, 4) and (Y W) and that
$\begin{array}{ccc} u \xrightarrow{F} V \\ \varphi & \downarrow \psi \\ \tilde{u} \xrightarrow{\pi} \tilde{v} \end{array} \qquad \text{where } \pi \text{ is the canonical projection.} \qquad \begin{array}{c} Pf \\ F \\ \tilde{u} \xrightarrow{\pi} \tilde{v} \end{array} \qquad \begin{array}{c} Pf \\ f \\ f \\ \tilde{u} \end{array}$

Examples (of submanifolds)	$dF_{e} = \begin{pmatrix} y_{\bullet} \\ z_{\bullet} \end{pmatrix}$ should be (y, x_{\bullet})
Let $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ (r,y) $\mapsto \sim y$	⇒ TF ×, y ≠ 0 F (3,2)
· · · · · ·	is a sub manifold
Then for a fixed $\alpha \in \mathbb{R}$, $F'(\alpha) = \{xy = \alpha\}$ [A] $F'(\alpha) = \{xy = \alpha\}$	· · · · · · · · · · · · · · · · · · ·
For any $\alpha \neq 0$, $F'(\alpha)$ is a submanifold. \mathbb{R}^2	$1 - 10^2 - 5x = 0^2$
Let's delete the non-positive x-plane, i.e., te	
Then define a map $\varphi : (x, y) \mapsto (x, y - \frac{\alpha}{x})$. Then $\mathcal{U} \longrightarrow \mathcal{U}$	nis is a diffeomorphism.
$\varphi(u \cap F'(\alpha)) = U \cap \mathbb{R}$, where $\mathbb{R} \subseteq \mathbb{R}^2$ is {	(x, 0), x e R}
$\begin{pmatrix} (x_0, y_0) \in U \cap F'(\alpha) \\ \Rightarrow & x_0 > 0 \\ x_0, y_0 = \alpha \end{pmatrix} \begin{array}{c} y_0 - \frac{\alpha}{x_0} = 0 \\ y_0 - \frac{\alpha}{x_0} = 0 \end{array}$	· · · · · · · · · · · · · · · · · · ·
$\frac{S' \leq R^2 }{ F(x,y) = x^2 + y^2} = R^2 \to R S' = F'(1)$	· · · · · · · · · · · · · · · · · · ·
Take $\mathcal{U}_{i} = \mathbb{R}^{2} \setminus \{(\gamma, o) \mid \gamma \leq o\}$ $\widetilde{\mathcal{U}}_{i} = \mathbb{R}_{>0} \times (-\pi_{i} \pi_{i})$	$) \leq \mathbb{R}^{2}$
A _	norphism and we get a chart (U_{i}, φ) on \mathbb{R}^{2}
$\varphi(u, \cap \varsigma') = 1 \times (-\pi, \pi) = \{(1, \Theta) \mid \Theta \in (-\pi, \pi)\} = \{(1, \Theta) \mid \Theta \in (-\pi, \pi)\}$	$1 \times \mathbb{R} \cap \widetilde{\mathcal{U}}, \qquad \xrightarrow{\pi} \qquad \qquad$
The Let F X - Y be a smooth map and l	let y & Y be a regular value.
Then $F'(y) \leq X$ is a submanifold of dimension	dim X - dim Y
Pf Let Z = $F'(y)$ and Let $x \in Z$.	to the the
Then $F'(y) \leq X$ is a submanifold of dimension PS Let $Z = F'(y)$ and Let $x \in Z$. Since x is regular, these are chosts on X and	Y such that
F becomes the canonical projection u-	$\dot{\mathbf{v}}$
Then we can look at $\tilde{u} = \pi$	$\int \mathcal{Y} \cdot \mathcal{Y} \cdot \cdot$
$\varphi(\mathcal{U} \cap Z) = \varphi(\mathcal{U} \cap F^{-1}(y)) = \varphi(\mathcal{U}) \cap \pi^{-1}(\varphi(y))$	
and Ti'(4(y)) is an affine space. Ti'(4(y)	$) = \mathbb{R} \times \{ \Psi(y) \} \square$

Lec 7-2/6

Mid-term: March 7th in class (2 problems) Final. May 8th 11 30 am - 2 30 pm Z C X a continuorifold - locally whethat $\varphi(U \cap Z) = \varphi(U) \cap \mathbb{R}^{dhm2} = \varphi(U) \cap \mathbb{R}^{dimX}$ P dim X

Some examples $\frac{R^2}{Z} = \frac{1}{12} \text{ Then } X \cap Z = \{0\} \text{ is not bransverse since } \overline{T} \cdot X = \overline{T} \cdot Z$ transverse

R nut transmerse not transverse transverse 2+2-3=1 dimX + dim2 - dimY

Lec 8-2/8

Homotopy Let fig: X > Y are maps between typological spaces, we define Def A homotopy between f and g is a continuous map H: X = I > Y such that H(x,0) = f, H(x, 1) = g and I = [0,] Examples B= (2) HEBEI - B (x, t) + tx + (1-t)g ·[-1,1] -> [-1,1]: X INX not sotipic Any two curves in Rt are homotopic. Def The spaces X and Y are homotopic if there are fixor and gitox s.t. gof-idx and fog-idr. R= Any $Y = [0, \Pi \Rightarrow S']$ D = to t is exp(tn)extends to a number in XxR S'= Def Two smooth maps f, g: X > Y between manfolds & X and Y are smoothly homotopic if there is a smooth M: X × I -> Y s.t. H(x, 0)=f and H(x, c)=g. Def: Let P be a property of a smooth map f: X => Y We say PB stable under smooth homotopy if YH: XXI => Y s.t H(x,0)=f, JE>O s.t. HtELO, E) H(x,+) X -> Y saturfies P · Non-transverse intersections are not stable. · Being nonconstant is stable.

Let L: IR" > IR" be a linear map, H: IR" x I -> IR" be a honotopy of linear maps. I.e. HEET, H(-, t): R" > R". lover sent continues I.e. H. I-> Matman is continuous. Props Suppose given Mas above and rk L2r for some r. I Then, JEO st HtE[O, E), rk H(t) 2r (rank can only have Proof: Since rkL2r, J on rar-minor of L upper discontinuity) which has non-zero determinant. We may suppose it is top right corner. Then, let A. Matmen -> Matrix Then, we have a I better matrix G is continuous and G(0)+0 Jdet(A) D ZCOD V/ CEO => JE>O VEE[0, E), G(E) + O. 0 R This Let f: X-> Y be smooth and assume X is compact. Then the following properties are stable: 1. Immersion 2. Submersion 3. Local diffeomorphism (b. Diffeomorphism) (c. Submersion (c. Diffeomorphism) (c. Submersion (c. Submersi Pf 1,2,3, 4 in one go: set diff 1 is saying rk dfx = n. Let n=din X, m=din Y. 2 - " = rk dfx = m Transerselity Trivit + Indix = Trivit 3 - 11 - rk dfx z n=m - 11 - we have ToX - TELONY - TELONY/TEASE 2 y ft 7 => Tradise being surjective. A rie (Todfx) 2n Nov let H: X * I - Y be a smooth homotopy. Then, we have say rkdfrzr txex. Since H is snooth, we see that given (1,0) exit Fopen Ux × [0, E) in X×I such that rkdf+ 1+2r + (4, +) = Ux×[0, E) We do this the siget a cover of X by full, x + X3. Use compactness to get a Prite subcover Un, Un, Un, Uxe -> let E= Trial E. Srk dft zr +(c,t) exe[0, E). $let \Sigma = \min_{1 \le i \le l} \Sigma_i$ H at time t

Now we do 5 and 6: 5. Need to show that injectivity is stable for embeddings. Suppose not. Then there are sequences ti, x, y, s.t. ft, (x:)=fully.) compactness. Then take limits => f(x) = lim ft: (x,) = lim ft: (yi) = f(y) > X=y. Then, look at the map F: (x, +) + (f+(x), +) This is an immersion at t=0 at X. Since the Jacobian is () Then fis locally injective around x, but () 1). That's a contradiction since any neighborhood contains X: and y: for i >> 0. 6. It is a difference phism. We know fe is going to be an embedding It small enough. We're done if we shar that f is surjective. Since it small enough, for is a submersion =) for is an open map. Since X is compact => ft is a closed => fe(X) is both open and closed in Y YF small enough. Then assuming X is connected (we always can), we see f(X) = Y. =

Lec 9-2/13 - Morse Theory I
Some Analysis
A subset X & IR" is said to have measure zero if 4 200,
I open cubes U, such that the U's cover × and Zivol(Ui) < E.
An open use in R" is a subset of the form (a, b,) X X (an, bn).
Its volume is $vol = \prod_{i=1}^{n} (b_i - a_i)$
Examples: 1) Q = R is of measure zero.
2) More generally, any countable X is as measure zero.
3) $\mathbb{R} = \mathbb{R} \times \{0\} \in \mathbb{R}^2$ has measure zero.
moundermanning use countable cover, thicken by diminishing thickness, c.g. 2
Prop: If f: U -> V is a diffeomorphism between open subsets of R" and SEU of
measure zero, then f(s) also has measure zero
Prop: A countable union of sets of measure zero is measure zero.
$\frac{PF}{2i} = \frac{1}{2^{n}} = 1$
Det: Let X be a smooth manifold. A subset SEX has measure zero is for every chart
(U, φ) on X, the set $\varphi(U \land S)$ has measure zero.
Thm (Surd):
If F: X -> Y is smooth, then the set of critical values of F,
denoted CF, has measure zero in Y.
Premark: Were not claiming anything about F'(CF); e.g. let C: X -> Y
be a constant map, dim X, dim Y>O. Then every x & X is a critical pt boz C.
Cor: It Z & X is a submanifold with dim Z < dim X,
then Z has measure zero in X.

Pf: L: Z→X, the for any Z=Z, diz'TzZ→TzX is not surjective since din Z < din X,
so Z is a critical value. Hence any Z & Z is a critical value and
there's no atters, so Ci has measure zero.
If f' X -> R is a smooth function with X compact, then it has at least 1 critical pt.
Det: The Hessian of a function $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ is the matrix $M_f = \left(\frac{\partial f}{\partial x_i x_j}\right)$.
Def: A critical point x e U for I: U - R is non-degenerate if det H1 + 0.
It X is a manifold, then we can define non-deg critical points for a smooth
function using clearts. By the chain rule, this is independent of charts.
Det: A smooth function f: X - R is Morse if all critical points are non-degenerate.
Thm: Any manifold has a Morse function.
Thm: The set Morse functions on a compact manifold is dense and open in the space
I smooth functions.
Thim: If X = IR", then for any smooth f X -> R, for almost all linear maps
L RN -> IR, f+L is Morse.
Notation: D" is the closed ball in R" and 2D" = 5"
Def An open null is an open ball D" 20"
An open n-cell in a topological space X is an open U homeomorphic
to an open n-cell
A cell decomposition of a top space X is a disjoint union $X = \bigsqcup_{i \in I} e_i$, where
I is an index set and each e; is an n-cell for some n.
E_{\times} S = S 1 [P]

Def: If $f_2: S^{n-1} \to X$ is continuous, then	
as follows: $X \cup_{i,j} D^* := X \sqcup D^* / \sim$, if for $x \in X$ and $y \in S^{*-1}$ is $x = I(y)$.	where \sim is defined as $\sim \gamma$ $f: S^{*'} \rightarrow \{pt\} = \times$
Example ×	
sadelle pts. $rim = \frac{1}{5} \frac{1}{100} \frac{1}{$	$\times \mathbf{n} \tilde{\mathbf{D}}_{1} $
$-h < 0$; $f(-\infty, h]) = 0$	· · · · · · · · · · · · · · · · · · ·
$ h = 0 : f'(-\infty, 0]) = \{p_0\} $ $ homology $ $ 0 < h < a : f'(-\infty, h]) = \bigoplus_{p_0} \sim \{p_0\} $	
	attached I cell to the previous preimage
• $b < h < c : f'((-\infty,h)) = 0$	\mathcal{P} = $\frac{1}{2}$
$-c \leq h$ $(-\infty,h]) = (h) \sim (h)$	- " 2 cell "
The index of a Morse function is the	dimension of the space of
negative eigenvalues of Hy.	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

Lec 10-2/15 Weap up Morse, embedding than into Euclidean spaces.
Morse lumma: Let f X -> R be a Morse function and x, 6 X a writeral point.
Then there are coordinates such that $\hat{f}(x_1, x_n) = f(x_2) - \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} x_i^2$
Det In the above notation, λ is the index of x_{\bullet} .
Ded Let Y = X be a subspace of a top space.
We say that Y is a deformation retract of X if there is a homotopy
H: X × I → X such that H(x,0) = x V x ∈ X
$H(x, 2) \in Y \text{ and } H(y, 2) = y \forall y$
Them (2st fundamental thin)
Let $f: X \rightarrow \mathbb{R}$ be Morse. Let a, $b \in \mathbb{R}$, $a < b$. Assume $f'([a, b])$ contains no
vatical pts. Then F((-0, a]) is a deformation retract of f'((-00, b])
Them (Real) compact
Them (Real) compact Let $f: X \rightarrow be a Morse function with only two oritical points.$
Then X is horeomorphic to S ^{din X} .
Them (2nd fundamental thin)
Let $f: X \rightarrow \mathbb{R}$ be a Morse function and $C \in \mathbb{R}$ a vitical value, $f(x_0) = C$
Suppose the index of xo is 2. Then let E>0 be such that f'([c-E, c+E]) contains no other
critical points. Then f'((-00, C+E]) is obtained attaching a λ -cell to f'((-00, C-E]).
Del Let X be a smooth manifold. If {U;} is an open cover of X, we say that
a family of smooth, non-negative functions p: × -> IR is a partition of unity
subordinale to {Ui} it:
1) $mpp(p_i) \leq \mathcal{U}_i$ 3) $\widehat{2_i} p_i = 1$
2) $\forall x \in X$, only finitely many $g_i(x) \neq 0$

Lec 11-2/20 Embedding results in the noncompact cose
Continuing from last time (Clasifying)
$F_{[v]} = \pi_{[v]} \circ F : \text{looking for } [v] \in \mathbb{RP}^{N-1} \text{ s.l. } F_{(v)} = F_{[v]}(y) \text{ for some } x, y \in X, x \neq y.$
$\Rightarrow \pi_{[v]}(F(x)-F(y))=0 \iff F(x)-F(y) \text{ is parallel to } v, i.e.$
[t(F(x)-F(y))] = [v] diagonal
This is expressable as the map $\times \times \times / \Delta \longrightarrow \mathbb{R} \mathbb{P}^{N-1}$ $(x, y) \longmapsto [F(x) - F(y)]$
$dim(X \times X/S) = 2n$. $dim \mathbb{RP}^{N^{-1}} = N^{-1}$. By assumption, $2n < N^{-1}$
=> map is not surjective for almost choices at [v] by Search's Theorem, i.e.,
choosing [v] in the condenant.
Non-compact case: We need to show that there is an injective immersion into some RN for a start.
Def: An exhaustion Sunction on a manifold × is a smooth f × → R such that
for all $\alpha \in \mathbb{R}$, the preimage $\int ((-\infty, \alpha))$ is compact.
Such an F is proper.
Prop: Any manifold X admit such an extracistion function.
PS: Let {Ui}; be an open cover of X and let
$\{V_i\}$ be a (locally - finite) refinement of $\{U_i\}$ such that \overline{V}_i are compact. $(\overline{V}_{acis} \in U_i)$
Let {Si} be a partition of unity subordinate to {Ui} and so that Si Ja(i) = 1.
Take a sequence $a_i \in \mathbb{N}$, $\lim_{n \to \infty} a_i = \infty$. Set $f := \sum_{i=2}^{n} a_i g_i$
Fix a & R. Thue these is n & N s.t. a; > a V i > n.
We claim $f'((-\infty, \alpha]) = f'([0, \alpha]) \subseteq \bigcup_{i \ge 1} \nabla_{\alpha(i)}$
This is because for $i_0 > n$, $f(x) = \overline{2}i_1 a_i f_i(x) = \overline{2}i_1 a_i f_i(x) + a_i_0 > a$ for $x \in \overline{V}_{d(i_0)}$.
· · · · · · · · · · · · · · · · · · ·

The : Ang X selvite an injecture immersion into some
$$\mathbb{R}^d$$
.
PI Let I be a non-regative exhaustion on X.
Let $\{(W_i, p)\}$ be an open cover by chords, indust by N.
Deline $Y_i = S^{-1}(Tr, irrit)$. Let $E > 0$ be small sample $\{e_3, E = t_i\}$
and define $x_i = S^{-1}((i \cdot f, irrit)) \cap \{(U_i, N - \cap M_{u_i})\}$ where $U_i, U - \cup U_{u_i} \ge Y_i$.
So $\times i$ is an open verifiberband of Y_i . It is also convert by foribly rooms choole.
Hence we get an injective immersion Y_i into Eactions space for X_i .
For each i , take a smooth momenty function $\sigma_i : X \to \mathbb{R}$ such that $\sigma_i | y = 1$, any $\sigma_i \le X_i$.
The U_i may $F: X \to \mathbb{R}^{2M \times 1}$ buy for here F_i and F_i have
is an injective immersion. D
So i y we have an injective immersion, by the projection construction, we get an
injective immersion $F: X \to \mathbb{R}^{2M \times 1}$. It readily be proper.
We may assume $|F(x)| \le 1 \quad \forall x \in X$ (by taking a differ $i \in y = 1$ may $i \in y$ in $i \in Y_i$.
The $x \to \mathbb{R}^{2d \times N - 2}$ The readily be proper.
We may assume $|F(x)| \le 1 \quad \forall x \in X$ (by taking a differ $i \in y = 1$. $i \in M_i$.
The $2d x \times - 3$ The reduce the dimension of $\mathbb{R}^{2d \times N \times 2}$ by 1 using
 $x \mapsto (F(x), F(x))$ the projection along some $v \in \mathbb{R} \mathbb{P}^{2d \times N \times 2}$ by $1 = x$
and the left compared of v is and z .
Then $G_{ij} := \pi_{ij} - G : X \to \mathbb{R}^{2d \times N - 1}$ is a propense injective immersion, so
an coholding. Pf. Let $K \in \mathbb{R}^{2d \times N - 1}$ is conpared. The choose in $x \Rightarrow 0$ so that
 $K \le \Sigma^{N} : |F_{i,k}(x_i)|^{k = 3}$. Would be show $G_{ij}(k)$ is compared. Some $F_{ij}(0) = x - (3,v)v$
 $\Rightarrow G_{ij}(0) = G(x) - (G(x))v = (F(x), F(x)) - (F(x), V_{i,k}(x_i))(v, v_{i,k}(x_i))$
 $v_{i,k} = v = (V, v_{k,k}(x_i) - (F_{ij}, v_{i})) = (F(x), F(x)) = 2x + 1$.
 $F(x) = V(V, v_{k,k}(x_i) = (F(x), F(x)) = (F(x), F(x)) = 2x + 1$.
 $F(x) = (V, v_{k,k}(x_i)) = (F(x), F(x)) = (F(x), F(x)) = 2x + 1$.
 $F(x) = V(v, v_{k,k}(x_i)) = (F(x), F(x)) = (F(x), F(x)) = 2x + 1$.
 $F(x) = V(v, v_{k,k}(x_i) = (F(x), F(x)) = (F(x), F(x)) = 2x + 1$.
 $F(x) =$

Lec 12-2/22 Manifolds with boundary
Clarifying proof from last time
$G = \pi_{v} \circ G = G - \{G, v\} v K \in \{x \mid x_{2din X+1} \mid \leq \alpha\}, K \text{ compart in } \mathbb{R}^{2din X+1}$
God Gry (K) compact xek
$\Rightarrow G_{(v)}(x) = (F(x), f(x)) - \left\langle (F(x), f(x)) (v', v_{2dix x+1}) \right\rangle (v', v_{2dix x+1})$
$=\left(\left(*, \int (x) \left(1 - v_{2d, x+1}^{2} \right) - \left(F(x) V' \right) v_{2d, x+1} \right) \right)$
By D-inequality, we get
$ f(x) (1-\upsilon_{2dix+1}^2)- (F(x),\upsilon')\upsilon_{2dix+1} \leq \alpha \implies f(x) (1-\upsilon_{2dix+1}^2)-1 \leq \alpha$
$\Rightarrow f(x) \leq \frac{a+1}{(1-v_{2din,X+1}^{2})} = A \Rightarrow G_{[v]}^{-1}(K) \leq f'([-A,A]) \rightarrow conject \Box$
Manifolds with boundary
$H_n = \{x \in \mathbb{R}^n : x_n \ge 0\} - upper half-plane ////////////////////////////////////$
Det A munifold with boundary is a topological space X with an
open cover by charts: $(\mathcal{U}_i, \varphi_i)$, where $\varphi_i: \mathcal{U}_i \to \varphi_i(\mathcal{U}_i) \in \mathcal{H}_n$
are homeomorphisms and transition functions are smooth
Examples I I J-pair & pants
Prop/Det Let X be a manifold with boundary & din X = n.
Then Int(X) is an n-dim manifold (without boundary).
Let DX be the set of x EX s.I. I a cleast (q, U) with x EU and place DHn.
Then DX is well-defined and is a manifold of dim = n-1.
Pf: DX is well-defined because if (V, 4) is another charl and 4(n) ∉ DHn, then we get a diffeomorphism between an open disk and a helf - disk, which is a contradiction since the latter is not open in R ⁿ , thick T (h D ⁿ , l) (h and helf - disk , which is a
Aride: In fact, \mathbb{R}^n and \mathcal{H}_n are not honeomorphic, e.g. $\pi_n(\mathbb{R}^n \mid pt) \neq 0$, while $\pi_n(\mathcal{H}_n \mid pt) \cong 0$.

Det The tangent space to a manifold with boundary is
the equivalence class of arrows $\sigma: (-2, 0] \to X$ or $\sigma: [0, c) \to X$ s. $\sigma(0) = x$.
under $\sigma_1 \sim \sigma_2$ iff $\sigma_1'(1) = \sigma_2'(1)$
This is introduced to doal with normal vectors at the boundary 23
Lemma Let X be a manifold and f: X - R a smooth function
with regular value a Thun Z = f'((-0, a)) is a manifold with boundary DZ = f'(a).
Pf Since a is regular, I locks like the canonical projection onto the last coordinate
$\pi:(x_{1},,x_{n})\mapsto x_{n}, \ n=din X$
So around $x_0 \in f'(a)$, we have a chart $\varphi: \mathcal{U} \rightarrow \varphi(\mathcal{U}), \varphi(\mathcal{U} \cap Z) \cong H_{\mu}$
Thun (Saul)
Let $f: X \rightarrow Y$ be a smooth map where X is a manifold with boundary
and Y is a manifold (so $\partial Y = \phi$).
Then the set of initial values for f, C; has measure zero.
Pf f defines 2 smooth maps. fo: Int $(X) \to Y$ and $\Im f := f _{\Im X} : \Im X \to Y$.
Then both have sets of critical values of measure zero, so we get Cy is of measure zero
" Usual Surd
<u>Then</u> Let X be a manifold with boundary, Y a manifold $(\partial Y = \phi)$ and $f: X \to Y$ smooth. If Z \leq Y is a submanifold and $f \neq Z$, and $\partial f \neq Z$, then $f'(Z)$ is a submanifold of X
with boundary $\partial(f'(Z)) = f'(Z) \cap \partial X = \partial f'(Z)$ $P(T_{i}, q_{i}, q_{i}) = \int (Z) \cap \partial X = \partial f'(Z)$
<u>Pf</u> : The question is local, so we may assume $X \in H_n$ and $Y = \mathbb{R}^n$. The question is local, so we may assume $X \in H_n$ and $Y = \mathbb{R}^n$.
If x & f'(Z) is not on the boundary of X, we are done by transversality in the case of manifolds without boundary.
Suppose $x \in f'(Z) \cap \partial X$. Then we have an extension of denoted $\tilde{f} : U \to \mathbb{R}^n$ where is an
open ball in \mathbb{R}^n and $x \in \mathcal{U}$. Then, since $df_n = d\hat{f}_n$, we see that $\hat{f} \neq 2$ locally.

	e claim				1.	1. 64	A .			•	•		•		٠	•	•	•	•	•	•	•	•	•	•
Finish	next	time.			•		•	•	• •	٠	•	٠	٠	•	•	٠	٠	•	٠	•	•		•	•	٠
				• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•
	• •	• •	0	0 0	٠	٠	٠		• •	•	٠	٠	٠	٠	٠	٠	•	٠		٠	•	٠			•
• • •	• •		٠	• •		٠	٠	0	• •		٠	٠		٠	0	٠	٠	٠	•	٠	٠	٠	0	٠	•
			•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			0	0 0			•		• •	•	•						*			•					•
	• •			• •	0	٠	٠	٠		٠	٠	٠	٠	٠		•	٠	•	•	٠	•	٠	٠	•	
	• •	• •		• •						٠				•	•	•	•		•			•		•	•
• • •	• •	• •	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
							0		• •																
					٠		٠	٠			٠	٠	٠		٠	*	•	•	٠	٠	٠		•	٠	
• • •	• •	• •		e e	٠	•		•	• •	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	·	•	٠	•
			•			•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
• • •	• •	• •				٠	٠				٠	٠		٠			•	٠	•			٠	0	•	
• • •	• •	• •	٠	• •	٠		•	٠	• •		٠		٠	•	٠			•		•		•	٠		·
• • •	• •	• •	•	• •	٠	٠	٠	٠	• •		٠	٠	٠	٠	٠	•	٠	٠	•	٠	•	٠	٠	•	•
• • •		• •	•		•		•			•	•	•	•		•	•	•		•	•				•	•
			0	• •	٠		•	•	• •	•	٠		٠		•			•		•			•		
	• •						•				•				•	•	•					•		•	•
• • •	• •	• •			٠		٠	٠			٠	٠	٠		٠	*	•		•	٠	٠		•	٠	•
• • •	• •	• •	0	0 0	0			0	• •	٠	٠			•	0	٠	٠	٠	٠	0	٠	٠		٠	•
	• •			• •	0	٠	٠	0		٠	٠	٠	0	•	0	٠	٠	•	•	•	•	٠	•	٠	
• • •																									
• • •																									
• • •																									
• • •	• •	• •					•				·				•	•	•								•
• • •																									

Tangent Space: Lec 13 Author: Persy i.e. $V \subseteq$ Def Tangent Space to a mfol W. boundary is the space of equivalence Classes of curves $\delta \cdot (-5, 0] \rightarrow X$ or $[0, 5) \rightarrow X$ under $\delta_1 \sim \delta_2$ $\delta(0) = X$ $\delta_1'(1) = \delta_2'(1)$

hemmen:

Let X be a manifold and
$$f: X \rightarrow R$$
 a smooth func with regular value as R
Then $Z=f^{+1}(r-\infty, aT)$ is a manifold with boundary $d \geq -f^{-1}(a)$
Pt:
since a is regular, f looks like the canoical projection onto the last coordinate
 $Ti(X_1, \dots, X_n) \rightarrow X_n$ so around a We have the chart $Y: U \rightarrow Y(U) = H_n$
Thus $(Sard)$
let $f: X \rightarrow Y$ be a smooth map where X is a manifold with
boundary and Y is a mfd (so $dY = \phi$)
Thus the set of vitical values for f Cf has measure 0.
Pt: f defines 2 smooth maps $f_0: Int X \rightarrow Y$
 $df = fl_{0X} J^{X \rightarrow Y}$
Then both sets of critical values of measure 0, so We get Cf measure 0
years sards
Thus: Let X be a manifold with boundary, Y a mfd ($\partial Y = \phi$) and
 $f: X \rightarrow Y$ smooth if $Z = Y$ is a submit of and $f fi Z$ and $J fir Z$. then $f^{-1}(Z)$ is
a submanifold of X with boundary $\partial Lf^{-1}(Z) = f^{-1}(Z) \cap \partial X$.
Pt: local quartion. may assume $X \in H_n$ and $Y = IR^n$ if $X \in f^{-1}(Z)$ is not
on the boundary we've done by the prev. Transversality.

Suppose
$$x \in f^{-1}(\mathbb{Z}) \cap \partial X$$
.
Then we have an extension of f , denoted by $\tilde{f} \cdot U \rightarrow \mathbb{I}\mathbb{Z}^{m}$.
Where U is open ball in \mathbb{R}^{n} and $x \in U$.
Then since $df_{x} = df_{x}$, we see that $\tilde{f} \wedge \mathbb{Z}$ locally
by transversahity, we get that $\tilde{f}(\mathbb{Z})$ is a submit of \mathbb{R}^{n} and we
Chim $\tilde{f}(\mathbb{Z}) \cap \mathbb{H}_{n} = f(\mathbb{Z})$
=W
Define $T_{m}: W \rightarrow \mathbb{R}$
 $(X_{V}, \dots, Y_{M}) \mapsto \mathbb{A}_{n}$
By lomma: Since $Tt_{w}^{1}(\mathbb{I}^{p}(0)) = f^{1}(\mathbb{Z})$ af O is a regular value for Tw , we are done.
Suppose D is not a regular value. Hence there is some $x \in \mathbb{T}^{1}(0) \stackrel{\longrightarrow}{\longrightarrow} d\pi_{X} = 0$
By transversality: Codim($T_{X}W, T_{X}X$)= codim $(T_{f(X)}\mathbb{Z}, T_{f(X)}\mathbb{Y}) \stackrel{\bigoplus}{\longrightarrow} \mathbb{N}$
Note that $T_{X}W = (df_{X})^{-1}(\mathbb{I}_{f(X)}\mathbb{Z})$
By assumption on X . we see that $T_{X}W = (d, df_{X})^{-1}(T_{f(X)}\mathbb{Z})$
By assumption on X . we see that $T_{X}W = (d, df_{X})^{-1}(T_{f(X)}\mathbb{Z}, T_{f(X)}\mathbb{Y})$
Contradict \mathbf{Y} $(G_{T,T})$

Thm

Any topological 2-mild admits a unique smooth structure and
therefore-the classification the holds in the catyony of such ands
(or bet X be a compart 1-mild. W. boundary, then

$$H(\partial X) = 0 \pmod{2}$$

pts in dx. (if s' => 0 pts
interval Io. 1) => 2 pts]
boundary 2 bondary 2
Ger bet X be a compart unfol in boundary i: dx c> X
then i doesnot have a left inverse i.e. there is no Y st.
 $r: X = d X, \text{ roi} = |d_{dX}$
Pf Asonne such V exists, then let $z \in d X$ be a regular value
them if $n = \dim X$, we see that.
 $(dim r^{-1}(z) = 1)$
 $dim r^{-1}(z) = 1$
 $dim r^{-1}($

$$\underbrace{\text{(Dr} \quad (W \cdot B \cdot \text{fixed } pt + \text{fix})}_{\text{lat } B^n \text{ but the closed ball in } R^n, \text{ any } f \cdot B^n \Rightarrow B^n \text{ has a fixed } pt \text{ ine. } \exists x \in B^n \quad f(x) = x.$$

$$\stackrel{\text{M}}{} \text{ Perfine } g \cdot B^n \Rightarrow S^{n-1} \text{ assame } f \text{ has ho fixed } pt \text{ as follows } f^n \text{ any } x \in B^n$$

$$\stackrel{\text{Qu}}{} \xrightarrow{} y^n$$

Pf. We've going to consider a pullback diagram:

$$W \longrightarrow Z$$
then we be going to show that
$$\int_{r}^{r} \int i$$
the following one equivalent:
$$XxS \longrightarrow \mathcal{F}$$

$$(A) S \in S \text{ is a regular value of the Projection}$$

$$\Pi_{in}^{i} W \rightarrow S.$$

$$(A) S \in S. f_{s} \neq Z \text{ and } \mathcal{F}_{s} \neq Z$$

Lec 14-2/29
$T_{\rm m} (f_{\rm m}, f_{\rm m}, g, \tau_{\rm m}, g, \tau_{\rm m})$
The (Genericity of Transversality) V_{2} Let $F: X \times S \rightarrow Y \ge 2$, and $F \land 2$, $\partial F \land 2$
Then $f_s := F(-, s) \wedge Z$ and $\partial f_s \wedge Z$ for almost all $s \in S$.
<u>PF</u> Consider the diagram
$\pi_{w}\left(\int_{X\times S} \frac{\int}{F}, \gamma = 1\right) f_{s} \uparrow Z f_{s} \text{ is a regular value of } Tr_{w}.$
$\pi_{W} \begin{pmatrix} F \\ S \\ T \\ X \\ X \\ T \\ T \\ S \end{pmatrix} = \frac{1}{2} The claim is:$ $\pi_{W} \begin{pmatrix} F \\ S \\ T \\ T \\ T \\ T \\ S \end{pmatrix} = \frac{1}{2} The claim is:$ $\pi_{W} \begin{pmatrix} F \\ S \\ T \\ T \\ T \\ T \\ S \end{pmatrix} = \frac{1}{2} The claim is:$ $\pi_{W} \begin{pmatrix} F \\ S \\ T \\ T \\ T \\ T \\ S \end{pmatrix} = \frac{1}{2} The claim is:$ $\pi_{W} \begin{pmatrix} F \\ S \\ T \\ T \\ T \\ T \\ T \\ S \end{pmatrix} = \frac{1}{2} The claim is:$
$(P \neq 2)$
Pf of 1) Assume SES is a regular value of The
WTS $\operatorname{Tm} d(f_s)_x + \overline{T}_{F(x,s)} Z = \overline{T}_{F(x,s)} Y$, where $x \in X$.
We know that FAZ => for any or in TF(1,5) Y, there are
$(v_1, v_2) \in T_{(x,s)}(X \times S)$ and $w \in T_{F(x,s)}$? such that $dF_{(x,s)}(v_1, v_2) + w = V$
We'd like v2 = 0, but it wouldn't be the case automatically.
Since s is regular, we get a vector $(v_1', v_2) \in T_{(r,s)} $ which that $(d\pi_w)_{(r,s)}(v_1', v_2) = v_2$.
Then the vector v, -v' is our desired solution,
Since $d(f_s)_{x}(v_i - v_i') + w = dF_{(x,s)}(v_i, v_s) \left(-dF_{(x,s)}(v_i', v_s) + w\right)$
=> we can modify w by $dF_{(x,s)}(v'_{i},v_{2}) \in T_{F(x,s)} Z$ to get our $v \in T_{F(x,s)} Y$. \Box
Given I and Z, how do we construct such deformations F?
If $f: X \to \mathbb{R}^N$, then we can simply take $F: X \times \mathbb{R}^N \to \mathbb{R}^N$ $(x,s) \longmapsto f(x) + s$
This is a submession, so transverse to anything we like.
$Y^{s} = \{ x \in \mathbb{R}^{N} : x-y < \varepsilon \text{ for some } y \in Y \}.$ $F^{s} = \{ x \in \mathbb{R}^{N} : x-y < \varepsilon \text{ for some } y \in Y \}.$ $F^{s} = \{ x \in \mathbb{R}^{N} : x-y < \varepsilon \text{ for some } y \in Y \}.$ $F^{s} = \{ x \in \mathbb{R}^{N} : x-y < \varepsilon \text{ for some } y \in Y \}.$ $(x,s) \longmapsto f(x) + s \longmapsto y$
$(x,s) \longmapsto f(x) + s \longmapsto g$

Normal bundle

In general, let $2 \xrightarrow{l} \times be a submanifold. T \times _{2} / T_{2}$
Then we have an exact sequence $0 \xrightarrow{d_1} TZ \rightarrow TX _2 \rightarrow cover(d_1) \rightarrow 0$
Det The normal bundle of the embedding 2:2 -> X is N2/x = TX/2/TZ.
If $X \in \mathbb{R}^{k}$, we have $T_{x} X \in \mathbb{R}^{k} \forall x \in X$. $T_{z} \hookrightarrow T_{z}$
Then we define $N_{X/R^{k}} = (T_{x} X)^{\perp}$ and their union $\coprod_{x \in X} N_{X/R^{k}, x}$ Z =
is called the normal bundle of X in Rk.
Propo Let X & IR be a subrantfold. Then NX/R is a submanifold of X × IR of dimension k
and the canonical projection $\pi: N_{X/R^4} \rightarrow X$ is a submession.
Pf If A is a linear mayo, A: IR ~ IR, then its transpose is At defined (Au, u) = (v, ATu)
$A^{t}: \mathbb{R}^{n} \to \mathbb{R}^{k}$ and $I_{m}(A^{t}) = (ker(A))^{t}$ if A surjective. Moreover, if A surjective,
$AA^{t}: \mathbb{R}^{m} \to \mathbb{R}^{m}$ is in $GL_{m}(\mathbb{R}^{m})$, i.e. invertible.
Let $\mathcal{U} \subseteq \mathbb{R}^k$ be open and φ a subservision $\varphi: \mathcal{U} \to \mathbb{R}^m$ such that $\varphi'(o) = \mathcal{U} \cap X$.
Then set $N_{X/R^{k}}(u) = N_{X/R^{k}} \cap (u \times R^{k})$. Note that $T_{x} X = les(d\varphi_{x}) \forall x \in U \cap X$.
Define two maps: $\overline{\mathcal{P}}: \mathcal{U} \times \mathbb{R}^k \longrightarrow \mathcal{U} \times \mathbb{R}^m \ (x, v) \longmapsto (x, d\varphi_x(v))$
$\Psi: \mathcal{U} \times \mathbb{R}^{n} \to \mathcal{U} \times \mathbb{R}^{k} (\varkappa, \omega) \longmapsto (\varkappa, (de_{n})^{t}(\omega)).$
Than, since x index dex dex is smooth, we see that \$ \$ I is a diffeomorphism.
$\mathcal{U}_{n} \times \longrightarrow \mathcal{G}_{n}(\mathbb{R})$
So I is a diffeomorphism onto its image $N_{X/R^{k}}(u)$ and $T': N_{X/R^{k}}(u) \longrightarrow U \times R'$
is our chart.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·